Bifurcations of vortex structures in two-dimensional flows

Morten Brøns

Department of Applied Mathematics and Computer Science Technical University of Denmark

Hydrodynamics at all length scales:
from high-energy to hard and soft matter
November 18-22, 2019

von Karman vortex street

$2 S$ wake

Oscillating cylinder may lead to exotic wakes

$P+S$ wake

Williamson, in Ponta \& Aref, J. Fluids Struct. 22(2006), 327-344

Other body shapes produce very exotic wakes

Schnipper et al, J. Fluid Mech. 633(2009), 411-423

Hydrodynamics at all length scales

Hydrodynamics at all length scales

Wingtip vortex

Helical vortex

Vortex breakdown

Rayleigh-Bénard convection

3D separation

What is a vortex?

From Webster

VOItEX noun

vor-tex | \'vorr- teks (1) \}
plural vortices \'vór-tə-, sēz (1) \also vortexes \'vór-, tek-sez (1) \}

Definition of vortex

1 : something that resembles a whirlpool
// the hellish vortex of battle

- Time

2 a : a mass of fluid (such as a liquid) with a whirling or circular motion that tends to form a cavity or vacuum in the center of the circle and to draw toward this cavity or vacuum bodies subject to its action
especially: WHIRLPOOL, EDDY
b : a region within a body of fluid in which the fluid elements have an angular velocity

The notion of a vortex is so widely used in fluid dynamics that few pause to examine what the word strictly means. Those who do take a closer look quickly realize the difficulty of defining vortices unambiguously.
G. Haller, An objective definition of a vortex, JFM 2005

The notion of a vortex is so widely used in fluid dynamics that few pause to examine what the word strictly means. Those who do take a closer look quickly realize the difficulty of defining vortices unambiguously.
G. Haller, An objective definition of a vortex, JFM 2005

Considerable confusion surrounds the longstanding question of what constitutes a vortex, especially in a turbulent flow. This question, frequently misunderstood as academic, has recently acquired particular significance since coherent structures (CS) in turbulent flows are now commonly regarded as vortices
J. Jeong \& F. Hussain, On the identification of a vortex, JFM 1995

28 definitions of a vortex

Table 2
Classification of the existing vortex identification methods in the literature.

Author	Year	Method	Region/Line	Invariant	Local/Global	2D/3D	Objective
Hunt et al. [17]	1988	Q-criterion	Region	Galilean	Local	3D	No
Hunt et al. [17]	1988	Maximum Q	Line	Galilean	Local	3D	No
Chong et al. [18]	1990	\triangle-criterion	Region	Galilean	Local	3D	No
Jeong and Hussain [19]	1995	λ_{2}-criterion	Region	Galilean	Local	3D	No
Jeong and Hussain [19]	1995	Minimum λ_{2}	Line	Galilean	Local	3D	No
Zhou et al. [20]	1999	Swirling Strength	Region	Galilean	Local	3D	No
Cucitore et al. [21]	1999	Enhanced Swirling Strength	Region	Galilean	Gobal	3D	No
Miliou et al. [22]	2005	Cut-off value λ_{2}	Region	Galilean	Local	3D	No
Haller [23]	2005	Mz	Region	Lagrangian	Local	3D	Yes
Green et al. [24]	2007	Lyapunov Exponent	Region	Lagrangian	Local	3D	Yes
Fuchs et al. [25]	2008	Delocalized unsteady vortex	Region	Lagrangian	Gobal	3D	No
Gûnther et al. [26]	2016	Rotation invariance	Region	Rotating	Local	3D	No
Berdahl and Thompson [27]	1993	Swirl Parameter	Region	Not	Local	3D	No
Banks and Singer [28]	1995	Predictor-Corrector	Line	Not	Local	3 D	No
Cucitore et al. [21]	1999	R-definition	Line	Not	Gobal	3D	No
Lugt [29]	1999	Stream lines	Line	Not	Global	3D	No
Lugt [29]	1999	Path lines	Line	Not	Global	3D	No
Weinkauf and Theisel [30]	2010	Streak lines	line	Not	Global	3D	No
Spalart [31]	1988	Vorticity magnitude	Region	Not	Local	3D	No
Spalart [31]	1988	Vorticity lines	Line	Not	Gocal	3D	No
Kline and Robinson [32]	1990	Pressure iso-surface	Region	Not	Global	3D	No
Kline and Robinson [32]	1990	Pressure minima	Line	Not	Local	2D	No
Degani et al. [33]	1990	Helicity	Line	Not	Local	3D	No
Sujudi and Haimes [34]	1995	Eigenvector	Line	Not	Local	3D	No
Roth and Peikert [35]	1998	Parallel Vectors	Line	Not	Local	3D	No
Holmen [16]	2012	Velocity components	Region	Not	Local	3D	No
Wang and Li [36]	2014	Rotation index-based	Region	Not	Local	2D	No
Dong et al. [37]	2016	Combing λ_{2} and vortex filaments	Line	Not	Local	3D	No

Overview of rest of talk

(1) Streamlines, pathlines, streaklines
(2) Vortex definition \# 1: Closed streamlines
(3) Vorticity

- Point vortices
- Vortex definition \# 2: Extremum of vorticity
- The onset of vortex dynamics in the cylinder wake
(4) Vortex definition \# 3: The Q-criterion
- Q-vortices in boundary layer eruption
(5) Summary

The setting

- The following takes place in the continuum limit - a smooth macroscopic velocity field is assumed and is all that is needed.

The setting

- The following takes place in the continuum limit - a smooth macroscopic velocity field is assumed and is all that is needed.
- The specific constitutive properties of the fluid is of secondary importance - special results for Newtonian fluids will be presented.

Streamlines, pathlines, streaklines

For a time-dependent velocity field $\mathbf{v}(\mathbf{x}, t)$:
The (instantaneous) streamlines at $t=t_{0}$ are the solution curves to

$$
\frac{d \mathbf{x}}{d t}=\mathbf{v}\left(\mathbf{x}, t_{0}\right)
$$

The pathlines are the solutions to

$$
\frac{d \mathbf{x}}{d t}=\mathbf{v}(\mathbf{x}, t)
$$

If dye is fed from a point x_{0} a streakline appears in the flow. if the pathline which fulfills the initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ is denoted $\mathbf{x}\left(t_{0}, t\right)$ the streakline at time t is the curve

$$
t_{0} \rightarrow \mathbf{x}\left(t_{0}, t\right), \quad t_{0} \in\left[t_{s}, t\right]
$$

where t_{s} is the time the experiment (or dye release) is started.

- If the flow is steady, $\mathbf{v}(\mathbf{x}, t)=\mathbf{v}(\mathbf{x})$, streamlines, pathlines and streaklines coincide.
- In two-dimensional incompressible flow there is a streamfunction $\psi(\mathbf{x}, t)$ such that

$$
\mathbf{v}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \nabla \psi=\binom{\frac{\partial \psi}{\partial y}}{-\frac{\partial \psi}{\partial x}} .
$$

The streamlines are the level curves of ψ.

Vortex defintion \# 1

A vortex in a 2D flow is a region with closed streamlines.
$R e=1.54$

$R e=26$

Vortex defintion \# 1

A vortex in a 2D flow is a region with closed streamlines.

$$
\operatorname{Re}=1.54
$$

$$
R e=26
$$

Not Galilean invariant - two observers moving with a constant relative speed will not find the same streamline structure.

Gaussian vortex in a background flow \mathbf{U}

Vorticity and streamfunction for a Gaussian vortex

$$
\omega=e^{-r^{2}}, \quad \psi=-\frac{1}{4}\left(\ln \left(r^{2}\right)+\int_{1}^{\infty} \frac{e^{-a r^{2}}}{a} d a\right), \quad r^{2}=x^{2}+y^{2}
$$

Streamlines

$$
\mathbf{U}=\mathbf{0} \quad \mathbf{U}=\binom{-0.2}{0} \quad \mathbf{U}=\binom{-0.4}{0}
$$

Streamline structure depends on the velocity of the observer - only meaningful where there is a distinguished coordinate system such as in steady flows.

Vorticity in two dimensions

$$
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
$$

Navier-Stokes equation

$$
\frac{D \mathbf{v}}{D t}=-\frac{1}{\rho} \nabla p+\nu \Delta \mathbf{v}, \quad \frac{D}{D t}=\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla .
$$

Take the curl - vorticity transport equation

$$
\frac{D \omega}{D t}=\nu \Delta \omega
$$

Ideal fluids $(\nu=0)$
Vorticity is frozen in the fluid.
A point vortex of circulation Γ centered at $\mathbf{x}_{0}, \omega=\Gamma /(2 \pi) \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ induces a velocity field

$$
\mathbf{v}=\frac{\Gamma}{2 \pi} \frac{\widehat{\mathbf{x}-\mathbf{x}_{0}}}{\left|\mathbf{x - x _ { 0 }}\right|^{2}}
$$

Ideal fluids cont.

N point vortices placed at $\mathbf{x}_{\alpha}, \alpha=1, \ldots, N$ induce a velocity field

$$
\mathbf{v}=\sum_{\alpha=1}^{N} \frac{\Gamma_{\alpha}}{2 \pi} \frac{\widehat{\mathbf{x}-\mathbf{x}_{\alpha}}}{\left|\mathbf{x}-\mathbf{x}_{\alpha}\right|^{2}}
$$

Each vortex is a material point and moves in the velocity field from the other vortices

$$
\frac{d \mathbf{x}_{\beta}}{d t}=\sum_{\substack{\alpha=1 \\ \alpha \neq \beta}}^{N} \frac{\Gamma_{\alpha}}{2 \pi} \frac{\widehat{\mathbf{x}_{\beta}-\mathbf{x}_{\alpha}}}{\left|\mathbf{x}_{\beta}-\mathbf{x}_{\alpha}\right|^{2}}, \quad \beta=1, \ldots, N
$$

Point vortices successfully used to model cylinder wakes (von Kármán, 1912)

How to generalize to real viscous flows where vorticity diffuses, $\frac{D \omega}{D t}=\nu \Delta \omega$

Vortex definition \#2

A vortex is a region of concentrated vorticity.

Vortex definition \#2

A vortex is a region of concentrated vorticity.

Vorticity is Galilean invariant.

Generalizing point vortices

A feature point of a vortex is a local extremum of vorticity,

$$
\begin{gathered}
\partial_{x} \omega=\partial_{y} \omega=0 \\
\operatorname{det}(H)>0, \quad H=\left(\begin{array}{ll}
\partial_{x x} \omega & \partial_{x y} \omega \\
\partial_{x y} \omega & \partial_{y y} \omega
\end{array}\right) .
\end{gathered}
$$

If $\operatorname{det}(H)<0$, the critical point of ω is a saddle.

> Iso-curves of ω near a critical point $\begin{array}{ll}\operatorname{det}(H)>0 & \operatorname{det}(H)<0\end{array}$

Motion of critical points of vorticity (extrema and saddles)

A critical point $(x(t), y(t))$ of vorticity fulfills

$$
\partial_{x} \omega(x(t), y(t), t)=0, \quad \partial_{y} \omega(x(t), y(t), t)=0
$$

Implicit differentiation yields equations of motion

$$
\binom{\dot{x}}{\dot{y}}=-H^{-1}\binom{\partial_{x t} \omega}{\partial_{y t} \omega}=\binom{\frac{\partial_{x y} \omega \partial_{y t} \omega-\partial_{y y} \omega \partial_{x t} \omega}{\operatorname{det}(H)}}{\frac{\partial_{x y} \omega \partial_{x t} \omega-\partial_{x x} \omega \partial_{y t} \omega}{\operatorname{det}(H)}}
$$

Vortices are created or destroyed when $\operatorname{det}(H)=0$

Cusp or saddle-center bifurcation of vortices

Theorem Assume the Hessian H has zero as a simple eigenvalue at a critical point at $(x, y, t)=(0,0,0)$, and choose the coordinate system such that

$$
H(0,0,0)=H_{0}=\left(\begin{array}{cc}
0 & 0 \\
0 & \partial_{y y} \omega_{0}
\end{array}\right)
$$

Assume the non-degeneracy conditions

$$
A=\partial_{y y} \omega_{0} \neq 0, \quad B=\partial_{x t} \omega_{0} \neq 0, \quad C=\partial_{x x x} \omega_{0} \neq 0
$$

Then there are critical points of vorticity given by
$x(t)= \pm \sqrt{-\frac{2 B}{C}} t+\mathcal{O}(t), \quad y(t)=\left(-\frac{1}{A} \partial_{y t} \omega_{0}+\frac{B}{A C} \partial_{x x y} \omega_{0}\right) t+\mathcal{O}\left(t^{3 / 2}\right)$
If $B / C>0$ the two critical points exist for $t<0$ and merge and disappear at the origin at $t=0$. If $B / C<0$ the points are created at $t=0$ and exist for $t>0$. In both cases, one of the critical points is a saddle, the other is an extremum.

Cusp bifurcation example

$$
\omega=t(y-x)+y^{2}-\frac{1}{3} x^{3}, \quad \partial_{x} \omega=-t-x^{2}, \quad \partial_{y} \omega=t+2 y
$$

Critical points

$$
x= \pm \sqrt{-t}, \quad y=-\frac{1}{2} t
$$

Easy to check that the assumptions of the theorem are fulfilled at $(x, y, t)=(0,0,0)$.

Wake of cylinder close to wall

Rasmus Ellebæk Christiansen, Master's Thesis, 2013.

The role of the vorticity transport equation

$$
\partial_{t} \omega+(\mathbf{v} \cdot \nabla) \omega=\nu \Delta \omega
$$

In the regular case, the equations of motion for the critical points of vorticity become

$$
\begin{aligned}
& \dot{x}=u-\nu \frac{\partial_{y y} \omega \Delta \partial_{x} \omega-\partial_{x y} \omega \Delta \partial_{y} \omega}{\operatorname{det}(H)} \\
& \dot{y}=v-\nu \frac{\partial_{x x} \omega \Delta \partial_{y} \omega-\partial_{x y} \omega \Delta \partial_{x} \omega}{\operatorname{det}(H)}
\end{aligned}
$$

For the cusp bifurcation we get

$$
\begin{array}{r}
B=\partial_{x t} \omega_{0}=\nu \Delta \partial_{x} \omega_{0}, \quad \frac{x(t)^{2}}{\nu t}=-2\left(1+\frac{\partial_{x y y} \omega_{0}}{C}\right)+\mathcal{O}(t) \\
y(t)=\left(v+\nu \frac{\partial_{x x y} \omega_{0} \partial_{x y y} \omega_{0}-\partial_{x x x} \omega_{0} \partial_{y y y} \omega_{0}}{A}\right) t+\mathcal{O}\left(t^{2}\right)
\end{array}
$$

The onset of vortex dynamics in the cylinder wake

Heil, Rosso, Hazel, MB, J Fluid Mech. (2017), vol. 812, pp. 199-221.

- Flow is steady and symmetric at modest Reynolds numbers.
- Steady flow becomes unstable at

$$
R e_{\text {crit }}=\frac{U_{\text {crit }} D}{\nu} \approx 46
$$

via a symmetry-breaking, super-critical Hopf-bifurcation.

- Instability leads to formation of "Karman vortex street" via periodic shedding of vortices with a characteristic frequency.

Vorticity field pre- and post-Hopf bifurcation

- Before Hopf bifurcation: Vorticity is generated on no-slip boundaries and then advected downstream; diffusion spreads out the profile as $x \rightarrow \infty$. Flow is symmetric about $y=0$.

"Carpet plot" of vorticity, $z=\omega(x, y)$, above logarithmic colour contours of $|\omega(x, y)|$.

Vorticity field pre- and post-Hopf bifurcation

- After Hopf bifurcation: Time-periodic, asymmetric flow. Vorticity field is advected downstream [Karman vortex street].

"Carpet plot" of vorticity, $z=\omega(x, y, t)$, above logarithmic colour contours of $|\omega(x, y, t)|$.

Fluid dynamics near the Hopf bifurcation

Difficult to simulate close to bifurcation due to long transients

Theory: Flow close to the Hopf bifurcation is well approximated by

$$
\mathbf{v}(x, y, t ; R e) \approx \mathbf{v}\left(x, y ; \operatorname{Re}_{\text {crit }}\right)+\varepsilon \widehat{\mathbf{v}}(x, y) e^{\mathrm{i} \Omega t}
$$

where

- $\mathbf{v}\left(x, y ; R e_{\text {crit }}\right)$ is the steady flow at the Hopf bifurcation
- $\widehat{\mathbf{v}}(x, y)$ is a critical eigenfunction of the linearized problem at the Hopf bifurcation
- $\mathrm{i} \Omega$ is the corresponding critical eigenvalue
- $\varepsilon \sim\left(R e-R e_{\text {crit }}\right)^{1 / 2}$ is a proxy for the excess Reynolds number (above the critical value).

- Logarithmic colour contours of $|\omega(x, y, t)|$.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

How (and where) are the extrema in the vorticity generated?
Cusp bifurcation: saddle and extremum appear "out of nowhere".

- Logarithmic colour contours of $|\omega(x, y, t)|$.
- Iso-lines of $\omega(x, y, t)$ (black lines).
- Level curve $\partial \omega / \partial x=0$ (blue lines).
- Level curve $\partial \omega / \partial y=0$ (cyan lines).
- Intersections $=$ critical points of vorticity field.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

$$
\varepsilon=0.032
$$

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

Location/existence of cusp bifurcation as function of ε

Plot of zero levels of $\partial \omega / \partial x$ (red), $\partial \omega / \partial y$ (blue) at time when vortex is created. Location of bifurcation indicated by green marker.

- Cusp doesn't seem to disappear - it just moves downstream as ε is reduced!

Cusp bifurcation "disappears to" infinity as $\varepsilon \rightarrow 0$??

Plot of cusp position, $X_{\text {Min }}(\varepsilon)$:

- Observation:

$$
X_{\text {Min }} \sim \varepsilon^{-1 / 2}
$$

Well, not quite...

- No vortices are created when $\varepsilon<0.00057$
- For $\varepsilon=0.00057$ a vortex is created at $X_{\text {Min }}=117.1$

So, here's what really happens

- Karman vortex street develops at finite ε.

So, here's what really happens

- Karman vortex street develops at finite ε.

So, here's what really happens

- Karman vortex street develops at finite ε.

So, here's what really happens

- Karman vortex street develops at finite ε.

So, here's what really happens

- Karman vortex street develops at finite $0.00054<\varepsilon<0.000631$.
- Cusp bifurcation first appears far downstream of cylinder...

So, here's what really happens

- Karman vortex street develops at finite $0.00054<\varepsilon<0.000631$.
- Cusp bifurcation first appears far downstream of cylinder...
- ...and then moves rapidly upstream as ε is increased.

So, here's what really happens

- Karman vortex street develops at finite $0.00054<\varepsilon<0.000631$.
- Cusp bifurcation first appears far downstream of cylinder...
- ...and then moves rapidly upstream as ε is increased.
- Karman vortex street persists for finite length and then disappears via a reverse cusp bifurcation when diffusion of vorticity smoothes out the local maxima.

So, here's what really happens

- Karman vortex street develops at finite $0.00054<\varepsilon<0.000631$.
- Cusp bifurcation first appears far downstream of cylinder...
- ...and then moves rapidly upstream as ε is increased.
- Karman vortex street persists for finite length and then disappears via a reverse cusp bifurcation when diffusion of vorticity smoothes out the local maxima.

So, here's what really happens

- Karman vortex street develops at finite $0.00054<\varepsilon<0.000631$.
- Cusp bifurcation first appears far downstream of cylinder...
- ...and then moves rapidly upstream as ε is increased.
- Karman vortex street persists for finite length and then disappears via a reverse cusp bifurcation when diffusion of vorticity smoothes out the local maxima.

So, here's what really happens

- Karman vortex street develops at finite $0.00054<\varepsilon<0.000631$.
- Cusp bifurcation first appears far downstream of cylinder...
- ...and then moves rapidly upstream as ε is increased.
- Karman vortex street persists for finite length and then disappears via a reverse cusp bifurcation when diffusion of vorticity smoothes out the local maxima.

Two different bifurcation phenomena occur

Two different bifurcation phenomena occur

(1) The Hopf bifurcation creating the periodic flow. This is a bifurcation in an infinite-dimensional function space.

Two different bifurcation phenomena occur

(1) The Hopf bifurcation creating the periodic flow. This is a bifurcation in an infinite-dimensional function space.
(2) The bifurcation of the vorticity field creating the vortex structures. This is a bifurcation in the physical space.

Two different bifurcation phenomena occur

(1) The Hopf bifurcation creating the periodic flow. This is a bifurcation in an infinite-dimensional function space.
(2) The bifurcation of the vorticity field creating the vortex structures. This is a bifurcation in the physical space.

The bifurcations take place at slightly different Reynolds numbers

Vortex definition \# 3:The Q-criterion

The velocity gradient tensor can be decomposed into a symmetric and a skew-symmetric part

$$
\begin{gathered}
\nabla \mathbf{v}=\left(\begin{array}{cc}
\partial_{x} u & \partial_{y} u \\
\partial_{x} v & \partial_{y} v
\end{array}\right)=\mathbf{S}+\boldsymbol{\Omega}, \\
\mathbf{S}=\frac{1}{2}\left(\nabla \mathbf{v}+\nabla \mathbf{v}^{T}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 \partial_{x} u & \partial_{x} v+\partial_{y} u \\
\partial_{x} v+\partial_{y} u & 2 \partial_{y} v
\end{array}\right), \\
\boldsymbol{\Omega}=\frac{1}{2}\left(\nabla \mathbf{v}-\nabla \mathbf{v}^{T}\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & \omega \\
-\omega & 0
\end{array}\right) .
\end{gathered}
$$

The Q-criterion: A vortex is a region where rotation dominates shear,

$$
\begin{gathered}
Q=\|\boldsymbol{\Omega}\|^{2}-\|\mathbf{S}\|^{2}>0, \quad\|\mathbf{A}\|^{2}=\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{T}\right) . \\
Q=\operatorname{det}(\nabla \mathbf{v})=\partial_{x} u \partial_{y} v-\partial_{y} u \partial_{x} v .
\end{gathered}
$$

Galilean invariant!

Bifurcation of Q-vortices

Bifurcation occurs at critical points of $Q, \partial_{x} Q=\partial_{y} Q=0$.
If the Hessian of Q is positive or negative definite, and $\partial_{t} Q \neq 0$, a punching bifurcation occurs

$$
\text { (a) } t<0
$$

(b) $\quad t=0$
(c) $\quad t>0$

If the Hessian of Q is indefinite, and $\partial_{t} Q \neq 0$, a pinching bifurcation occurs

(d)
$t<0 \quad(e)$
$t=0$

(f)

Nielsen, Heil, Andersen, MB, J. Fluid Mech. (2019), vol. 865, pp. 831-849

Bifurcation of Q-vortices from a no-slip wall

Wall punching

Wall pinching

Q-vortices in boundary layer eruption

Connection between vorticity and Q

There is no simple general connection between critical points of vorticity and Q-vortices. However:
If the flow has rotational symmetry around an extremum of vorticity, there is a Q-vortex around that point.

Summary

- Local extrema of vorticity are a simple generalization of inviscid point vortices to viscous flows
- Equations of motion and a bifurcation theory describing creation and merging of vortices are available
- The vortices in the Karman vortex street are created at a Reynolds number slightly higher than the critical value for onset of oscillations, at a distance ≈ 100 diameters downstream
- The Q-criterion identifies a vortex as a region where vorticity dominates shear
- A bifurcation theory for Q-vortices is available
- What about 3D?
- Vorticity is a vector field rather than a scalar field. Generalization of critical point not obvious
- Q is still scalar, so generalization is straightforward

